Identification of cis-regulatory sequences reveals potential participation of lola and Deaf1 transcription factors in Anopheles gambiae innate immune response
نویسندگان
چکیده
The innate immune response of Anopheles gambiae involves the transcriptional upregulation of effector genes. Therefore, the cis-regulatory sequences and their cognate binding factors play essential roles in the mosquito's immune response. However, the genetic control of the mosquito's innate immune response is not yet fully understood. To gain further insight on the elements, the factors and the potential mechanisms involved, an open chromatin profiling was carried out on A. gambiae-derived immune-responsive cells. Here, we report the identification of cis-regulatory sites, immunity-related transcription factor binding sites, and cis-regulatory modules. A de novo motif discovery carried out on this set of cis-regulatory sequences identified immunity-related motifs and cis-regulatory modules. These modules contain motifs that are similar to binding sites for REL-, STAT-, lola- and Deaf1-type transcription factors. Sequence motifs similar to the binding sites for GAGA were found within a cis-regulatory module, together with immunity-related transcription factor binding sites. The presence of Deaf1- and lola-type binding sites, along with REL- and STAT-type binding sites, suggests that the immunity function of these two factors could have been conserved both in Drosophila and Anopheles gambiae.
منابع مشابه
A large-scale RNAi screen identifies Deaf1 as a regulator of innate immune responses in Drosophila.
Innate immune signalling pathways are evolutionarily conserved between invertebrates and vertebrates. The analysis of NF-kappaB signalling in Drosophila has contributed important insights into how organisms respond to infection. Nevertheless, significant gaps remain in our understanding of how the activation of intracellular signalling elicits specific transcriptional programs. Here we report a...
متن کاملIdentification, isolation and bioinformatics analysis of specific tuber promoter in plants
In this study, in order to find the suitable tuber promoter, an experiment was conducted in Shahid Beheshti University in 2018. For this purpose, promoter sequences of different tuberous plants were searched at NCBI. Sequences were multiple-aligned and the target primers designed from conserved regions. PCR analysis confirmed the presence of the desired promoter in plants of sweet potato a...
متن کاملComparative genomics allows the discovery of cis-regulatory elements in mosquitoes.
The discovery and mapping of cis-regulatory elements is important for understanding regulation of gene transcription in mosquito vectors of human diseases. Genome sequence data are available for 3 species, Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus (Diptera: Culicidae), representing 2 subfamilies (Culicinae and Anophelinae) that are estimated to have diverged 145 to 200 millio...
متن کاملRegulation of Anti-Plasmodium Immunity by a LITAF-like Transcription Factor in the Malaria Vector Anopheles gambiae
The mosquito is the obligate vector for malaria transmission. To complete its development within the mosquito, the malaria parasite Plasmodium must overcome the protective action of the mosquito innate immune system. Here we report on the involvement of the Anopheles gambiae orthologue of a conserved component of the vertebrate immune system, LPS-induced TNFα transcription factor (LITAF), and i...
متن کاملGenes identified by an expression screen of the vector mosquito Anopheles gambiae display differential molecular immune response to malaria parasites and bacteria.
We performed a gene expression screen of the entire transcriptome of the major African malaria vector Anopheles gambiae for immune response genes in adult female mosquitoes, which is the developmental stage infected by malaria parasites. Mosquitoes were immune-stimulated for subtractive cloning by treatment with bacterial lipopolysaccharide, a potent and general elicitor of the innate immune re...
متن کامل